Crystal Structure, Linear and Nonlinear Optical Properties of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}^{*}$

By B. Morosin
Sandia Laboratories, Albuquerque, New Mexico 87115, U.S.A.
and J. G. Bergman and G. R.Crane Bell Telephone Laboratories Incorporated, Holmdel, New Jersey 07733, U.S.A.

(Received 19 October 1972; accepted 29 January 1973)

Abstract

The room-temperature crystal structure of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ has been independently determined and refined ($R=0.032$) by a full-matrix least-squares method using $1544 \mathrm{Mo} \mathrm{K} \mathrm{\alpha}$ counter-measured intensity data. This material crystallizes in space group Fdd 2 with eight molecules in a unit cell of dimensions $a_{0}=14.829$ (7), $b_{0}=22 \cdot 980$ (9) and $c_{0}=6.383$ (3) \AA. The calcium ions are coordinated to the six water oxygen and to two iodate oxygen atoms in a distorted Archimedian antiprism with edges $2 \cdot 85-3 \cdot 15 \AA$; the trigonal, pyramidal iodate ions [I-O, 1.81 (2) $\left.\AA ; \mathrm{O}-\mathrm{I}-\mathrm{O}, 98.2(7)^{\circ}\right]$ are held in the lattice by network of hydrogen bonds and arranged to give a highly distorted octahedral environment about the iodine (long I-O separations are $2 \cdot 82-2 \cdot 90 \AA$). The indices of refraction at 0.53μ are $n_{x}=1 \cdot 625, n_{y}=1 \cdot 654$, $n_{z}=1 \cdot 688$. The nonlinear coefficients $d_{31}, d_{32}, d_{333}, d_{113}, d_{223}$, measured relative to $d_{333}\left(\mathrm{LiIO}_{3}\right)$ are respectively $0.14,0.015,0.40,0.11,0.007$. The nonlinear bond polarizability β for the long ($\sim 2.8 \AA$) I-O bond is found to be twice that of the short ($\sim 1.8 \AA$) I-O bond.

Introduction

Noncentrosymmetric crystals that can be grown with good optical quality are of interest for their applications in second harmonic generation (SHG) and optical parametric generation. Development and treatment of nonlinear optical materials and their applications can be found in reviews by Bergman \& Kurtz (1970), and Hulme (1973). To date, a number of alkali iodates as well as iodic acid have been shown to have the desired large nonlinear optical coefficients and have been shown to be phase matchable (Kurtz, Perry \& Bergman, 1968; Bergman, Boyd, Ashkin \& Kurtz, 1969). Our structure studies, completed independently of Braibanti, Lanfredi, Pellinghelli \& Tiripicchio (1971; hereafter BLPT), indicated that $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ crystallizes in a noncentrosymmetrical space group; furthermore, SHG tests of powdered samples (Kurtz \& Perry, 1968) showed that the material was phase-matchable, which prompted examination of its optical properties.

Surprisingly, studies relating structure and optical nonlinearities in LiIO_{3} and HIO_{3} (Jeggo, 1970) showed that, of the two sets of iodine-oxygen bonds, the longer set (I-O $\sim 2 \cdot 8 \AA$, essentially a van der Waals interaction) contributes twice as much to the optical nonlinearity as does the shorter set (I-O~1•8 \AA). Since only 3 nonlinear coefficients (all of which are approximately equal in magnitude) have ever been measured on iodate compounds, one would like to test further this relation between bond distance and nonlinear susceptibility in other iodate compounds.

[^0]
Crystal structure

Because the preliminary results of Cingi, Emiliani \& Guastini (1967) were overlooked, a structure determination on $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was initiated by one of the authors several years ago. It was felt that an article pointing out the potential usefulness of noncentrosymmetric crystals for SHG was desirable. Recently, BLPT published their structure results, employing a different selection of axes; however, the structures are similar. Their residual index of 0.118 on data from photometrically-measured, integrated photographs appears rather high and, thus, warrants our reporting the present results.

(a) Experimental

The space group Fdd 2 was established on the basis of systematic extinctions $(h+k, k+l$ and hence $l+h$ odd for $h k l, k+l \neq 4 n$ for $0 k l$, and $h+l \neq 4 n$ for $h 0 l$ reflections absent). Absence of the center of symmetry was confirmed by the presence of a piezoelectric response and optical SHG.
The lattice constants $a_{0}=14 \cdot 829(7), b_{0}=22 \cdot 980(9)$, and $c_{0}=6 \cdot 383(3) \AA$ [selected according to Donnay's (1943) rules] were obtained on our diffractometer using Mo $K \alpha$ radiation. With eight molecules of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ per cell, the calculated density is 3.05 $\mathrm{g} \mathrm{cm}^{-3}$. (BLPT reports $2 \cdot 97 \mathrm{~g} \mathrm{~cm}^{-3}$ determined by the pycnometer method.) Since the space group was noncentrosymmetric, a set of Mo $K \alpha$ intensity data was measured which contained both positive and negative values of l. These 1544 intensity data were measured with a scintillation counter employing pulse-height discrimination; the $\theta-2 \theta$ scan technique was used with
a scan speed of $\frac{1}{2} \mathrm{deg} \min ^{-1}$ over the interval $2 \theta_{\lambda_{1}}$ 0.80° to $2 \theta_{\lambda_{2}}+0 \cdot 80^{\circ}$. Of these data, 23 were measured to be less than 3σ, where $\sigma=V\left(N_{S C}+K^{2} . N_{B}\right)$ in which $N_{S C}, \mathrm{~N}_{B}$, and K are the total scan count, background counts, and ratio of the scan to background time respectively. These particular data were, therefore, assigned a value equal to 3σ and considered to be unobserved in subsequent calculations.

Absorption corrections ($\mu_{\mathrm{Mo} \alpha}=63.4 \mathrm{~cm}^{-1}$) were applied to the intensity date for the crystal specimen bounded by large (112) and small (100) and (010) faces and of dimensions $0.44 \times 0.34 \times 0.28 \mathrm{~mm}$ (mounted on the longest direction [100]). Lorentz and polarization factors were applied and structure factors calculated using scattering factors from Table 3.3.1B (p. 210) for Ca^{2+} and I and from Table 3.3.1A (p. 202) for O and H and dispersion corrections for $\mathrm{Ca}(0 \cdot 2$ and $0 \cdot 4)$ and $\mathrm{I}(-6$ and 2-2) from Table 3.3.2C (p. 215) of International Tables for X-ray Crystallography (1962).

For space group Fdd2, there are 16 -fold general positions $\left(x, y, z ; \bar{x}, y, z ; \frac{1}{4}-x, \frac{1}{4}+y, \frac{3}{4}+z ; \frac{1}{4}+x, \frac{1}{4}-y, \frac{3}{4}+z\right)^{*}$ on which the iodine and oxygen atoms are situated as well as eightfold special positions on the twofold axis ($0,0, z$ and $\frac{1}{4}, \frac{1}{4}, \frac{3}{4}+z$) on which the calcium ion is situated; both position sets are combined with the face centering of ($0,0,0 ; 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}$; and $\frac{1}{2}, \frac{1}{2}, 0$). Positional parameters for the iodine atoms were obtained from a Patterson synthesis and those for the other atoms from a subsequent Fourier synthesis. Initially only reflections with positive value of l were employed in the least-squares refinement of the atomic positional and isotropic thermal parameters (the z parameter of I was set to zero). The value of the residual index R, where $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$, was reduced to 0.049 using dispersion corrections introduced by the method of Templeton (1955). The alternate absolute configuration yielded an R value of 0.047 . The value of the \mathscr{R} index ratio is $\mathscr{R}=0.049 / 0 \cdot 047=1.04$; hence, on the basis of the 844 positive l reflections used, the hypothesis that the first absolute configuration is correct can be rejected at a level much lower than 0.005 (Hamilton, 1965). This choice was confirmed by comparison of 74 pairs $(\pm l)$ of reflections for which the structure factor with and without dispersion resulted in a 5% difference. The

[^1]entire data set (except 040 which was considered to suffer secondary extinction) were subjected to leastsquares refinement with anisotropic thermal parameters yielding $R=0.032$; parameters obtained are listed in Table 1.* The average dispersion corrected observed structure factors are compared with the calculated values in Table 2.

(b) Results

The present refined atomic parameters differ by only a maximum of five pooled standard deviations from values obtained by BLPT; however, the R value is significantly smaller and the values for the I-O bond separations (Table 3) show less spread than values of $1.78,1.85$ and $1.90 \AA$ obtained by BLPT. Hence, the following results are described only in terms of the present values.

The coordination about the calcium ion consists of eight oxygen atoms (six water oxygen and two iodate oxygen atoms) situated in a distorted Archimedian antiprism with edges 2.85 to $3.15 \AA$ (Table 3). The pseudo-fourfold axes of these antiprisms are situated in the $a b$ plane; for example, in Fig. 1(a), using the calcium ion located at the center $\left(\frac{1}{4}, \frac{1}{4}\right)$, the pseudo-fourfold axis lies between the $\mathrm{Ca}-\mathrm{O}(2)$ and $\mathrm{Ca}-\mathrm{O}(6)$ vectors.

The separations in the iodate ion are typical of these found in other iodates: the bonds average $1.82 \AA$ with nonbonding neighboring iodate-oxygen interactions near $2 \cdot 8-2 \cdot 9 \AA$ (summarized by Keve, Abrahams \& Bernstein, 1971). In such an arrangement, the iodine

[^2]Table 1. Positional and thermal parameters for $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ Anisotropic thermal parameters are of the form $\exp \left[-\left(\frac{1}{4} \sum_{i}^{3} \sum_{j}^{3} B_{l j} a_{i}^{*} a_{j}^{0} h_{i} h_{j}\right)\right]$.

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Ca	$0 \cdot 0$	0.0	0.312(1)	$1 \cdot 0$ (2)	0.9(2)	$1 \cdot 0$ (2)	-	-	-
I	0.0145 (1)	$0 \cdot 13939$ (6)	$0 \cdot 0$	0.94 (5)	1.05 (4)	$0 \cdot 91$ (4)	0.01 (2)	-0.01 (5)	-0.02 (4)
O(1)	$0 \cdot 171$ (1)	$0 \cdot 074$ (1)	$0 \cdot 871$ (4)	$1 \cdot 5$ (6)	$1 \cdot 8$ (7)	$1 \cdot 6$ (7)	-0.3 (6)	$0 \cdot 4$ (6)	$0 \cdot 3$ (6)
$\mathrm{O}(2)$	0.223 (1)	$0 \cdot 184$ (1)	0.761 (5)	1.8 (6)	$1 \cdot 1$ (5)	1.7 (7)	0.5 (6)	-0.3 (7)	-0.1 (7)
O(3)	$0 \cdot 234$ (1)	0.095 (1)	0.480 (4)	$1 \cdot 3$ (6)	2.1(7)	$1 \cdot 1$ (7)	-0.2 (6)	-0.1 (6)	-0.1 (6)
$\mathrm{O}(4)$	$0 \cdot 165$ (1)	0.007 (1)	$0 \cdot 220$ (3)	$1 \cdot 6$ (7)	$1 \cdot 6$ (7)	$1 \cdot 2$ (8)	-0.1 (7)	$0 \cdot 1$ (5)	-0.1 (6)
O(5)	$0 \cdot 052$ (1)	0.098 (1)	0.406 (4)	$1 \cdot 5$ (7)	1.9 (5)	$1 \cdot 2$ (8)	0.0 (6)	-0.2 (5)	-0.2 (6)
O(6)	$0 \cdot 154$ (2)	0.228 (1)	$0 \cdot 374$ (4)	$2 \cdot 4$ (9)	$2 \cdot 3$ (8)	$1 \cdot 5$ (8)	$0 \cdot 5$ (7)	$0 \cdot 3$ (6)	$0 \cdot 5$ (6)

Table 2. Average observed and calculated structure factors

 -

(a) Calcium ion environment (e.s.d. $\mathrm{Ca}-\mathrm{O}, 0.02 ; \mathrm{O}-\mathrm{O}, 0.03 \AA$; $\mathrm{O}-\mathrm{Ca}-\mathrm{O}, 0.7^{\circ}$)

Separations (\AA)		Bond angles (${ }^{\circ}$)	
$\mathrm{Ca}-\mathrm{O}(2)$	2.47	$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}\left(2^{\prime}\right)$	78.2
$\mathrm{Ca}--\mathrm{O}(4)$	$2 \cdot 52$	$\mathrm{O}(4)-\mathrm{Ca}-\mathrm{O}\left(4^{\prime}\right)$	152.7
Ca--O(5)	$2 \cdot 44$	$\mathrm{O}(5)-\mathrm{Ca}-\mathrm{O}\left(5^{\prime}\right)$	152.3
$\mathrm{Ca}--\mathrm{O}(6)$	$2 \cdot 50$	$\mathrm{O}(6)-\mathrm{Ca}-\mathrm{O}\left(6^{\prime}\right)$	$74 \cdot 7$
		$\mathrm{O}(4)-\mathrm{Ca}-\mathrm{O}(6)$	$69 \cdot 2$
$\mathrm{O}(4)-\mathrm{O}(5)$	2.92	$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(5)$	71.2
		$\mathrm{O}(4)-\mathrm{Ca}-\mathrm{O}(5)$	$72 \cdot 1$
$\mathrm{O}(4)-\mathrm{O}(6)$	$2 \cdot 85$	$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(4)$	$72 \cdot 4$
$\mathrm{O}(4)-\mathrm{O}(2)$	$2 \cdot 94$	$\mathrm{O}(5)-\mathrm{Ca}-\mathrm{O}(6)$	$78 \cdot 7$
$\mathrm{O}(5)-\mathrm{O}(6)$	$3 \cdot 15$	$\mathrm{O}(5)-\mathrm{Ca}-\mathrm{O}(6)$	79.4
$\mathrm{O}(5)-\mathrm{O}(6)$	$3 \cdot 13$	$\mathrm{O}(4)-\mathrm{Ca}-\mathrm{O}(2)$	$86 \cdot 4$
		$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(6)$	113.6
$\mathrm{O}(5)-\mathrm{O}(2)$	$2 \cdot 85$	$\mathrm{O}(4)-\mathrm{Ca}-\mathrm{O}(5)$	114.9
$\mathrm{O}(6)-\mathrm{O}(6)$	3.03	$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(5)$	133.9
		$\mathrm{O}(4)-\mathrm{Ca}-\mathrm{O}(6)$	$136 \cdot 8$
$\mathrm{O}(2)-\mathrm{O}(2)$	$3 \cdot 11$	$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}(6)$	$146 \cdot 5$

(b) Iodate ion (e.s.d. I-O, $0.02 \AA$; O-I-O, 0.7°)

$\mathrm{I}-\mathrm{O}(1)$	1.81	$\mathrm{O}(1)-\mathrm{I}-\mathrm{O}(2)$	$99 \cdot 2$
$\mathrm{I}-\mathrm{O}(2)$	$1 \cdot 81$	$\mathrm{O}(1)-\mathrm{I}-\mathrm{O}(3)$	96.6
$\mathrm{I}-\mathrm{O}(3)$	1.82	$\mathrm{O}(2) \mathrm{I}(3)$	98.8
$\mathrm{I}-\mathrm{O}\left(1^{\prime}\right)$	2.88	$\mathrm{O}(1)-\mathrm{I}-\mathrm{O}\left(1^{\prime}\right)$	$170 \cdot 7$
$\mathrm{I}-\mathrm{O}\left(4^{\prime}\right)$	2.90	$\mathrm{O}(2)-\mathrm{I}-\mathrm{O}\left(4^{\prime}\right)$	178.3
$\mathrm{I}-\mathrm{O}\left(5^{\prime}\right)$	2.82	$\mathrm{O}(3)-\mathrm{I}-\mathrm{O}\left(5^{\prime}\right)$	171.3

(c) Water molecules (e.s.d. O-O, $0.03 \AA$; $\mathrm{O}-\mathrm{O}-\mathrm{O}, 0.9^{\circ}$)

$\mathrm{O}(4)-\mathrm{O}(3)$	$2 \cdot 80$	$\mathrm{O}(3)-\mathrm{O}(4)-\mathrm{O}(1)$	$93 \cdot 7$
$\mathrm{O}(4)-\mathrm{O}(1)$	$2 \cdot 70$	$\mathrm{O}(3)-\mathrm{O}(4)-\mathrm{O}(6)$	$76 \cdot 2$
		$\mathrm{O}(1)-\mathrm{O}(4)-\mathrm{O}(6)$	$152 \cdot 5$
$\mathrm{O}(5)-\mathrm{O}(3)$	2.73	$\mathrm{O}(3)-\mathrm{O}(5)-\mathrm{O}\left(3^{\prime}\right)$	$104 \cdot 5$
$\mathrm{O}(5)-\mathrm{O}\left(3^{\prime}\right)$	2.68	$\mathrm{O}(3)-\mathrm{O}(5)-\mathrm{O}(2)$	$123 \cdot 6$
$\mathrm{O}(5)-\mathrm{O}(2)$	2.85	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}(5)-\mathrm{O}(2)$	$130 \cdot 6$
$\mathrm{O}(6)-\mathrm{O}(2)$	2.87	$\mathrm{O}(2)-\mathrm{O}(6)-\mathrm{O}(4)$	$173 \cdot 1$
$\mathrm{O}(6)-\mathrm{O}(4)$	2.85	$\mathrm{O}(1)-\mathrm{O}(6)-\mathrm{O}(4)$	$100 \cdot 4$
$\mathrm{O}(6)-\mathrm{O}(1)$	2.93	$\mathrm{O}(2)-\mathrm{O}(6)-\mathrm{O}(1)$	$85 \cdot 8$

hydrogen bonds about this water, one is not able to eliminate the possibility of a bifurcated hydrogen bond similar to that found in several other hydrates (summarized in Morosin, 1967).

Optical properties

(a) Experimental

Single crystals $\sim 5 \mathrm{~mm}$ on a side were grown from an aqueous solution (300 ml) over a period of 6 months by convectively cycling the solution from the nutrient region (temp. $35^{\circ} \mathrm{C}$) to the crystal growth region (temp. $25^{\circ} \mathrm{C}$). Indices of refraction at $0 \cdot 53 \mu$, as determined from index matching oils and birefringence measurements, are given in Table 4. It is seen that $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is negative biaxial. The twofold polar axis is z, the acute bisectrix x, and the obtuse bisectrix z.

Table 4. Refractive indices of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Refractive index	At 0.53μ	At 1.06μ
n_{x}	1.625	1.582
n_{y}	1.654	1.625
n_{z}	1.688	1.653

The scheme for the array of nonlinear coefficients subject to $m m 2$ symmetry is (Nye, 1964)

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & d_{113} & 0 \\
0 & 0 & 0 & d_{223} & 0 & 0 \\
d_{311} & d_{322} & d_{333} & 0 & 0 & 0
\end{array}\right] .
$$

Hence, the components of the nonlinear polarization at the second harmonic wavelength in terms of the E fields at the fundamental wavelength are given by (Bergman \& Kurtz, 1970)

$$
\begin{gather*}
P_{x}=2 d_{113} E_{x} E_{z} \tag{1}\\
P_{y}=2 d_{223} E_{y} E_{z} \tag{2}\\
P_{z}=d_{311} E_{x}^{2}+d_{322} E_{y}^{2}+d_{333} E_{z}^{2} . \tag{3}
\end{gather*}
$$

The coefficients were measured relative to d_{333} of LiIO_{3} by SHG experiments using a Q switched NdYAG laser operating at 1.06μ. The experimental setup is shown in Fig. 2. Samples were prepared in the form of thin wedges $\left(\sim 5 \times 2 \mathrm{~mm}, \theta=3.5^{\circ}\right)$, which when translated along the wedge direction gave fringes (periodic maxima and minima in the observed second harmonic signal) allowing the determination of the coefficients $d_{i j k}$ as well as their respective coherence lengths $l_{i, k}$ (Fig. 3). The coherence length $\left(l_{i j k}\right)$ is related to the translational period $t(t=$ distance between maxima or minima) and the wedge angle (θ) by

$$
\begin{equation*}
l_{i j k}=\frac{1}{2} t \tan \theta . \tag{4}
\end{equation*}
$$

Observed coherence lengths are given in Table 5.
Table 5. Experimental SHG results on $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ relative to $\left(d_{333}\right) \mathrm{LiIO}_{3}$

Coefficient			
$i j k$	Coherence length $\pm l_{i k}(\mathrm{~m} \mu)$	Rel NL coefficient $\pm d_{i j k}(\sigma) \dagger$	
$(k, \varphi, \theta)^{*}$	333	$7 \cdot 5$	$0 \cdot 40(8)$
$\mathrm{b}, 0,0$	311	$2 \cdot 5$	$0.14(1)$
$\mathrm{b}, 0,90$	113	33	$0.11(1)$
$\mathrm{b}, 90,45$	322	$4 \cdot 2$	$0.15(8)$
$\mathrm{a}, 0,90$	223	18	$0.007(4)$
$\mathrm{a}, 90,45$			

* $k=$ propagation direction, $\theta=$ angle between the pump (1.06μ) polarization and the c axis, $\varphi=$ angle between the harmonic (0.53μ) polarization and the c axis.
\dagger Estimated standard deviation (σ) represents the variation in the last figure, also $d_{311} d_{33}<0$.

Once the coherence lengths and indices at $0.53 \mu \mathrm{~m}$ (Table 4) are known, one can calculate the indices at $1.06 \mu \mathrm{~m}$ using

$$
\begin{equation*}
l_{i j k}=\frac{1 \cdot 0 \mu \mathrm{~m}}{4\left[n_{i}-\frac{1}{2}\left(n_{j}+n_{k}\right)\right]} \tag{5}
\end{equation*}
$$

where the subscript i refers to the electric field polarization direction ($a, b, c<=>x, y, z<=>1,2,3$) at the harmonic $(0.53 \mu \mathrm{~m}), j$ and k the polarization directions at the fundamental ($1.06 \mu \mathrm{~m}$). The calculated indices at $1.06 \mu \mathrm{~m}$ are also listed in Table 5.
Since the laser power [$P(\omega) \sim 100 \mathrm{MW}$], mode structure and focused spot size ($\sim 25 \mu$) are constant from
one measurement to the next, the relative external SH power $P(2 \omega)$ from material A and material B is related [Wynne \& Bloembergen (1969)] to the nonlinear coefficients (d 's), the coherence lengths (l 's) and indices n by

$$
\begin{align*}
& P_{B} \tag{6}\\
& P_{A}
\end{align*}=\left[\begin{array}{l}
l_{B} \\
l_{A}^{\prime}
\end{array}\right]^{2}\left[\begin{array}{c}
d_{B} \\
d_{A}
\end{array}\right]^{2}\left[\begin{array}{l}
n_{1}^{2} n_{1 A} n_{2 A} \\
n_{1 B}^{2} n_{2 B}
\end{array}\right]\left[\frac{\left(1-R_{1 B}^{F}\right)^{2}\left(1-R_{2 B}^{F}\right)}{\left(1-R_{1 A}^{F}\right)^{2}\left(1-R_{2 A}^{F}\right)}\right],
$$

Fig. 1. (a) Projection down c on $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Only a unit $\frac{1}{2}$ along \mathbf{a} and \mathbf{b} of the face-centered lattice is shown. The calcium ions are located on twofold axes and are surrounded by eight oxygen atoms in a pseudo-Archimedian antiprism. (b) Projection down a. Only the contents of the cell between $x=0.0$ and $x=0.5$ are shown. The trigonal pyramidal iodate ions are primarily pointing along the \mathbf{a}, not \mathbf{c}, direction.

Fig. 2. Block diagram of experimental setup used to measure SHG in $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$.
where $n_{1 A}$ and $n_{2 A}$ refer to the indices at the fundamental and harmonic respectively.

The linear Fresnel power reflection coefficient is

$$
\begin{equation*}
R^{F}=\frac{(n-1)^{2}}{(n+1)^{2}} \tag{7}
\end{equation*}
$$

In our particular experimental setup we immerse the crystal in an oil of index $n=1.5$ to decrease reflection losses, hence

$$
\begin{equation*}
R^{F}=\frac{(n-1 \cdot 5)^{2}}{(n+1 \cdot 5)^{2}} \tag{8}
\end{equation*}
$$

Corrections for losses due to absorption and finite beam width compared to fringe spacing, discussed in detail by Boyd, Kasper \& McFee (1971), were considered negligible ($\sim 2 \%$ or less) in this particular case. Experimental results are summarized in Table 5.

(b)

Fig. 3. (a) $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ wedge configuration used for coupling to d_{33}, d_{31}, d_{15}. Propagation direction corresponds to k along the y axis

Coefficient	Fundamental polarization	Harmonic polarization
d_{33}	E_{z}	E_{z}
d_{13}	E_{x}	E_{z}
d_{15}	45° to Z	E_{x}

(b) $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ wedge configuration used for coupling to d_{33}, d_{32}, d_{24}. Propagation direction corresponds to k along the x axis.

Coefficient	Fundamental polarization	Harmonic polarization
d_{33}	E_{z}	E_{z}
d_{32}	E_{y}	E_{z}
d_{24}	45° to Z	E_{y}

The sign of d_{311} was found to be opposite to that of d_{333} while their respective coherence lengths were observed to have the same signs, as determined by interference methods (Miller, Nordland, Kolb \& Bond, 1970; Crane, 1972). We were unable to determine the relative sign of d_{322} since its small magnitude precluded the observation of interference between it and d_{333}.

(b) Discussion

It is unfortunate, from a device point of view, that the largest coefficient $\left(d_{333}\right)$ is not phase-matchable. Since the larger of the remaining coefficients $\left(d_{311}\right)$ is approximately a tenth the size of d_{311} of LiIO_{3} the material shows little promise as a frequency doubler for $1.06 \mu \mathrm{~m}$.

Considering the accuracy with which the nonlinear coefficients were measured, the Kleinman (1962) symmetry conditions are obeyed, i.e. $\left(d_{311}=d_{113}, d_{322}=d_{223}\right)$.

Using the model of Jeggo \& Boyd (1970) we have formulated the nonlinearities in terms of a distorted octahedron of oxygens about the iodine atom. This technique has recently been applied by Jeggo (1970) to HIO_{3} and LiIO_{3} using the Miller (1964) reduced tensor $\delta_{i j k}$ rather than the measured $d_{i j k}$'s, where

$$
\begin{equation*}
\delta_{i j k}=\frac{d_{i j k}}{\chi_{i} \chi_{j} \chi_{k}} \tag{9}
\end{equation*}
$$

Since the Kleinman symmetry condition is implicit in the bond model our observed δ^{\prime} s (δ_{311}^{c} and δ_{322}^{c}) shown in Table 6 are calculated from the average d 's (Table 5). The equations relating the δ 's to the microscopic nonlinear bond polarizabilities (β 's) for the 3 iodate crystals $\left[\mathrm{LiIO}_{3}, \mathrm{HIO}_{3}, \mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right.$ labeled with superscripts L, H and C , respectively] are

$$
\begin{gather*}
\delta_{333}^{\mathrm{L}} V^{\mathrm{L}}=\sum n_{i}^{3} \beta_{i}=0.656 \beta_{1}-1 \cdot 267 \beta_{2} \tag{10}\\
\delta_{311}^{\mathrm{L}} V^{\mathrm{L}}=\sum n_{i} l_{i}^{2} \beta_{i}=1 \cdot 107 \beta_{1}-1 \cdot 152 \beta_{2} \tag{11}\\
\delta_{233}^{\mathrm{H}} V^{\mathrm{H}}=\sum l_{i} m_{i} n_{i} \beta_{i}=-1 \cdot 169 \beta_{1}+1 \cdot 384 \beta_{2} \tag{12}\\
\delta_{333}^{\mathrm{C}} V^{\mathrm{C}}=\sum n_{i}^{3} \beta_{i}=-12.37 \beta_{1}+12.08 \beta_{2} \tag{13}\\
\delta_{311}^{\mathrm{C}} V^{\mathrm{C}}=\sum n_{i} l_{i}^{2} \beta_{i}=3.23 \beta_{1}-2.53 \beta_{2} \tag{14}\\
\delta_{322}^{\mathrm{C}} V^{\mathrm{C}}=\sum n_{i} m_{i}^{2} \beta_{i}=1.46 \beta_{1}-0.48 \beta_{2} \tag{15}
\end{gather*}
$$

where β_{1} and β_{2} represent the nonlinear bond polarizabilities of the short $(\sim 1.8 \AA)$ and long ($\sim 2.8 \AA$) iodine-oxygen bonds respectively. The i th bond has direction cosines $l_{i} m_{i} n_{i}$ (from I to O) and sums are taken over the unit cell of volume V. The respective volumes $\left(V^{\mathrm{L}}, V^{\mathrm{H}}, V^{\mathrm{C}}\right)$ are $(1 \cdot 345,2 \cdot 522,21 \cdot 74) \times 10^{-28}$ m^{3}. Using equations (10), (11), (12) and the sign relationships found by Jeggo $\left(\delta_{333}^{\mathrm{L}} \delta_{123}^{\mathrm{H}}<0\right)$ and Jerphagnon (1970) $\left(\delta_{333}^{\mathrm{L}} \delta_{311}^{\mathrm{L}}>0\right)$, we find $\beta_{1}=1.57 \times 10^{-28} \mathrm{~m}^{3}$ and $\beta_{2}=2.47 \times 10^{-28} \mathrm{~m}^{3}$. Substituting these β 's into equations (13), (14), (15) we then determine that $\delta_{333}^{\mathrm{C}} \delta_{333}^{\mathrm{L}}$ $<0, \delta_{333}^{\mathrm{C}} \delta_{311}^{\mathrm{C}}<0$ (also determined experimentally) and $\delta_{333}^{\mathrm{C}} \delta_{322}^{\mathrm{C}}>0$. Using these sign assignments we find a best least-squares fit for the observed and calculated δ 's (Table 6) is obtained for $\beta_{1}=1 \cdot 13 \times 10^{-28} \mathrm{~m}^{3}$ and
$\beta_{2}=2.24 \times 10^{-28} \mathrm{~m}^{3}$. The agreement (average error $\sim 25 \%$) is within the experimental uncertainties. The absolute magnitudes of β_{1} and β_{2} are respectively $0.72 \times$ $10^{-40} \mathrm{~m}^{4} / V$ and $1.43 \times 10^{-40} \mathrm{~m}^{4} / V$ [using $d_{123}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$ $\left.=0.628 \times 10^{-12} \mathrm{~m} / V\right]$, which is of the order of that found in other materials such as $\mathrm{LiNbO}_{3}, \mathrm{LiTaO}_{3}$, etc. (Jeggo, 1970). Furthermore, the ratio $\left(\beta_{2} / \beta_{1}\right)_{\text {obs }}=2.0$ is in agreement with the recent theoretical result of Levine (1973), which states that β should increase approximately as the square of the bond length, i.e. $\left(\beta_{1} / \beta_{2}\right)_{\text {calc }}=$ $(2 \cdot 8 / 1 \cdot 8)^{2}=2 \cdot 4$. Future experiments can hopefully determine whether indeed $\delta_{333}^{\llcorner } \delta_{123}^{\mathrm{H}}<0$ and $\delta_{333}^{\llcorner } \delta_{333}^{\mathcal{L}}<0$, as predicted by the model.

Table 6. Observed and calculated Miller deltas ($\delta_{i j k}$)
δ (calc) were obtained from nonlinear bond polarizabilities, β_{1} and β_{2} (see text). δ (obs) were obtained from $d_{333}\left(\mathrm{LiIO}_{3}\right)=$ $\pm 12 \cdot 4 d_{123}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right), d_{311}\left(\mathrm{LiIO}_{3}\right)=+11 \cdot 9 d_{123}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$, Jerphagnon! (1970), $d_{123}\left(\mathrm{HIO}_{3}\right)= \pm 10 \cdot 2 d_{123}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$, Bjorkholm (1968), and Table 5; hence all δ are relative to $d_{123}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$.

Compound	$\delta_{l j k}$	$\|\delta\|($ obs $)$	$\delta(\mathrm{calc})$
HIO_{3}	$\delta_{\mathrm{H}}^{\mathrm{H}}$	0.55	+0.70
$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\delta_{333}^{\mathrm{L}}$	0.87	+0.60
$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$	$\delta_{311}^{\mathrm{C}}$	0.39	-0.09
$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$	$\delta_{322}^{\mathrm{L}}$	0.03	+0.03
LiIO_{3}	δ_{33}^{L}	1.57	-1.56
LiIO_{3}	δ_{311}	0.96	-0.98

In view of this relationship between nonlinear susceptibility and bond length one should search for nonlinear materials where the bonded interactions are just less than a van der Waals length. This point might be further clarified by studying the newly discovered ferroelectric $\mathrm{MTeO}_{3}(\mathrm{M}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$, etc.) compounds (Yamada \& Iwasaki, 1972) which are isostructural with the iodates in the sense that like the $\mathrm{MIO}_{3}(\mathrm{M}=$ $\mathrm{H}, \mathrm{Li}, \mathrm{Na}$, etc.) compounds, they will also contain a severely distorted oxygen octahedron about the Te atom due to the Te nonbonded pair. With more optical data on these isoelectronic systems one might also learn the degree to which the lone pair itself contributes
to the nonlinear polarizability, an as yet completely unknown quantity.

References

Bergman, J. G. Boyd, G. D., Ashkin, A. \& Kurtz, S. K. (1969). J. Appl. Phys. 40, 2860-2863.

Bergman, J. G. \& Kurtz, S. K. (1970). Mater. Sci. Eng. 5, 235-250.
BJorkholm, J. E. (1968). IEEE J. Quantum Electron. QE-4, 970-972.
Boyd, G. D., Kasper, H. \& McFee, J. H. (1971). IEEE J. Quantum Electron. QE-7, 563-573.
Braibanti, A., Lanfredi, A. M., Pellinghelli, M. A. \& Tiripicchio, A. (1971). Inorg. Chim Acta, 5, 590-594.
Cingi, M. B., Emiliani, F. \& Gusatini, C. (1967). Acta Cryst. 23, 1114.
Crane, G. R. (1973). J. Appl. Phys. 44, 915-916.
Donnay, J. D. H. (1943). Amer. Min. 28, 313-328.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hulme, K. F. (1973). Rep. Prog. Phys. To be published.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jeggo, C. R. (1970). Optics Commun. 1, 375-376.
Jeggo, C. R. \& Boyd, G. D. (1970). J. Appl. Phys. 41, 27412743.

Jerphagnon, J. (1970). Appl. Phys. Lett. 16, 298-299.
Keve, E. T., Abrahams, S. C. \& Bernstein, J. L. (1971). J. Chem. Phys. 54, 2556-2563.

Kleinman, D. A. (1962). Phys. Rev. 126, 1977-1979.
Kurtz, S. K. \& Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
Kurtz, S. K., Perry, T. T. \& Bergman, J. G. (1968). Appl. Phys. Lett. 12, 186-188.
Levine, B. F. (1973). Phys. Rev. To be published.
Miller, R. C. (1964). Appl. Phys. Lett. 5, 17-19.
Miller, R. C., Nordland, W. A., Kolb, E. D. \& Bond, W. L. (1970). J. Appl. Phys. 41, 3008-3011.

Morosin, B. (1967). Acta Cryst. 23, 630-634.
Nye, J. F. (1964). Physical Properties of Crystals. New York: Oxford Press.
Templeton, D. H. (1955). Acta Cryst. 8, 842.
Wynne, J. J. \& Bloembergen, N. (1969). Phys. Rev. 188, 1211-1220.
Yamada, T. \& Iwasaki, H. (1972). Appl. Phys. Lett. 21, 89-90.

[^0]: * Work supported in part by the U.S. Atomic Energy Commission.

[^1]: * This choice of symmetry operators resulted from our method of calculating the absolute configurations.

[^2]: * After this paper was accepted, the authors had a discussion with S. C. Abrahams concerning the possibility of achieving either (a) an \mathscr{R} index ratio equal to 1.0 (the equal R values resulting from different sets of atomic coordinates) or (b) even the incorrect absolute configuration because of unequal convergence of the two least-squares refinements when only one set of reflections (as in the present case, $+l$) are used in determining R. Hence, the total data set was subjected to additional least-squares refinement which included, in addition, a correction for secondary extinction. The \mathscr{R} index ratio ($0.031 / 0 \cdot 036=1 \cdot 14$) confirmed the above assignment of the configuration; interestingly, the ratio proved to be larger than that for the case in which only one data set ($+l$) was used (see text). This suggests that the preferred procedure for the selection of the absolute configuration in noncentrosymmetric structures should use the entire data set. The introduction of the secondary extinction correction did not alter the positional parameters shown in Table 1; a few thermal parameters changed in the last digit, always less than $0.3 \times \sigma$.

